
Distributed Mutual Exclusion:-Module-2

Requirements of MUTUAL EXCLUSION Algorithms

 The primary objective of Mutual Exclusion algorithm is to guarantee that only one
request access the Critical Section at a time.

 In addition following characteristics are also considered important:

1. Freedom from dead locks: Two or more sites/process should not endlessly wait
for messages that will never arrive.

2. Freedom from starvation: A site must not wait indefinitely to execute

the CS while other sites are repeatedly executing the CS.

Requirements of ME Algorithms

3. Fairness: Fairness property generally means that the CS execution requests are
executed in order of their arrival in the system.

4. Fault Tolerance: In case of a failure, the algorithm can reorganize itself so that it
continues to function without any disruptions

Performance Matrices

Performance Matrices

 If SD is the synchronization delay and E is the average critical section execution
time, then the throughput is given by the following equation:

 System throughput = 1/(SD+E)

Low and high load performance

 Performance of a mutual exclusion algorithm depends upon the load.

 Performance of mutual exclusion algorithms are studied under two special
loading conditions, “low load” and “high load.”

 Under low load conditions, there is seldom more than one request for the critical
section present in the system simultaneously.

Low and high load performance

 Under heavy load conditions, there is always a pending request for critical
section at a site.

 A site is seldom in the idle state in heavy load conditions.

 Performance metrics for Mutual Exclusion algorithms can be easily calculated with
mathematical reasoning.

Best and worst case performance

 In the best case, prevailing conditions are such that a performance metric attains
the best possible value.

 In most mutual exclusion algorithms the best value of the response time is a
roundtrip message delay plus the CS execution time, 2T +E.

 The best and worst cases coincide with low and high loads, respectively.

NON TOKEN BASED ALGORITHMS

 In non token based algorithms a site communicate with a set of other sites to decide who should
execute the CS next.

 For a site Si Request set Ri contains ids of all those sites from which site Si must acquire permission
before entering the CS

 Non token based algorithms uses time-stamps to order requests for CS and to resolve conflicts
between simultaneous requests for the CS

 These algorithms maintain logical clocks and update them according to Lamport’s Scheme.

 Each request for CS gets a timestamp and smaller time stamp requests gets priority over larger time
stamp requests

Lamport’s Distributed Mutual
Exclusion Algorithm

 Lamport’s Distributed Mutual Exclusion Algorithm is a
permission based algorithm proposed by Lamport as an
illustration of his synchronization scheme for distributed systems.

 permission based timestamp is used to order critical section
requests and to resolve any conflict between requests.

 In Lamport’s Algorithm critical section requests are executed in
the increasing order of timestamps i.e a request with smaller
timestamp will be given permission to execute critical section first
than a request with larger timestamp.

Lamport’s Algorithm

In this algorithm

 Three type of messages (REQUEST, REPLY and RELEASE) are used and communication
channels are assumed to follow FIFO order.

 A site send a REQUEST message to all other site to get their permission to enter critical section.

 A site send a REPLY message to requesting site to give its permission to enter the critical
section.

 A site send a RELEASE message to all other site upon exiting the critical section.

 Every site Si, keeps a queue to store critical section requests ordered by their timestamps.

 request_queuei denotes the queue of site Si

 A timestamp is given to each critical section request using Lamport’s logical clock.

 Timestamp is used to determine priority of critical section requests. Smaller timestamp gets high
priority over larger timestamp. The execution of critical section request is always in the order of
their timestamp.

Example

Example- continue

Algorithm

To enter Critical section
 When a site Si wants to enter the critical section, it sends a request

message Request(tsi, i) to all other sites and places the request
on request_queuei. Here, Tsi denotes the timestamp of Site Si.

 When a site Sj receives the request message REQUEST(tsi, i) from site Si, it
returns a timestamped REPLY message to site Si and places the request of
site Si on request_queuej

To execute the critical section
 Site Si enters the CS when the following two conditions hold:

 L1: Si has received a message with timestamp larger than (tsi, i) from all
other sites.

 L2: Si’s request is at the top of request_queuei

Algorithm

To release the critical section:
 Site Si, upon exiting the CS, removes its request from the top of its request

queue and broadcasts a timestamped RELEASE message to all other sites.

 When a site Sj receives a RELEASE message from site Si, it removes Si’s
request from its request queue.

 When a site removes a request from its request queue, its own request may come
at the top of the queue, enabling it to enter the CS.

Lamport’s algorithm: Performance

 For each CS execution, Lamport’s algorithm requires N −1 REQUEST messages,
N −1 REPLY messages, and N −1 RELEASE messages.

 Ie, it requires 3(N-1) messages per CS invocation.

 The Lamport’s Algorithm can be optimized by reducing the no:of message to lie
between 3(N-1) and 2(N-1).

 This can be achieved by supressing REPLY messages in certain situations

Ricart–Agrawala Algorithm in Mutual Exclusion in
Distributed System

 Ricart–Agrawala algorithm is an algorithm for mutual
exclusion in a distributed system proposed by Glenn Ricart
and Ashok Agrawala. This algorithm is an extension and
optimization of Lamport’s Distributed Mutual Exclusion
Algorithm. Like Lamport’s Algorithm, it also follows
permission based approach to ensure mutual exclusion.

 The Ricart–Agrawala algorithm assumes that the communication channels are FIFO.

 The algorithm uses two types of messages:

 REQUEST

 REPLY.

Ricart–Agrawala Algorithm

 A process sends a REQUEST message to all other processes to request their permission to enter
the critical section.

 A process sends a REPLY message to a process to give its permission to that process.

 Lamport logical clocks to assign a timestamp to critical section requests.

 Timestamps are used to decide the priority of requests in case of conflict. Smaller timestamp gets
high priority over larger timestamp. The execution of critical section request is always in the
order of their timestamp.

 In this algorithm ,for every requesting site, the site with higher priority(smaller timestamp) will
always defer the request of the lower priority site.

 So the process with high priority gets to execute the CS

Ricart–Agrawala algorithm- Requesting critical section

 When a site Si wants to enter the critical section, it send a
timestamped REQUEST message to all other sites.

 When a site Sj receives a REQUEST message from site Si, It sends
a REPLY message to site Si if and only if

• Site Sj is neither requesting nor currently executing the critical section.

• In case Site Sj is requesting, the timestamp of Site Si‘s request is smaller
than its own request.Otherwise the request is deferred by site Sj.

Ricart–Agrawala algorithm- Executing and Releasing
critical section

 Site Si enters the critical section if it has received the REPLY message
from all other sites.

Releasing the critical section.

 When site Si exits the CS, it sends all the REPLY messages to all deferred
requests.

 The site with next highest priority request receives the last needed REPLY
message and enters the CS

Ricart–Agrawala algorithm- Performance

 For each CS execution, the Ricart–Agrawala algorithm requires N − 1 REQUEST
messages and N − 1 REPLY messages.

 Thus, it requires 2(N −1) messages per CS execution.

TOKEN-BASED algorithm

 A unique token is shared among all sites

 A site is allowed to enter its critical session if it possesses the token

 Token based algorithms uses sequence numbers instead of time stamps

 Every request for token contains a sequence number and sequence numbers of
sites advance independently.

 A site increments its sequence number counter every time it makes a request for
token

 Primary function of sequence number is to distinguish b/w old and current request
for token

SUZUKI –KASami’s Broadcast
algorithm

 If a site attempting to enter a CS does not have the token, it broadcasts a REQUEST message for the
token to all other sites.

 A site that possesses the token sends it to the site that sends the REQUEST message.

 If the site possessing the token is executing the CS, it sends the token only after it has exited the CS.

 A site holding the token can repeatedly enter the critical session until it sends the token to some other
site.

SUZUKI –KASami’s Broadcast
algorithm

 The main design issues in this algorithm are:

 How to distinguishing an outdated REQUEST message from a current REQUEST
message.

 How to determine which site has an outstanding request for the CS

SUZUKI –KASami’s Broadcast
algorithm

 Outdated REQUEST messages are distinguished from current REQUEST
messages in the following manner:

 A REQUEST message of site Sj has the form REQUEST(j, n) where n (n = 1 2)
is a sequence number that indicates that site Sj is requesting its nth CS execution.

 A site Si keeps an array of integers RNi[1, … ,N] where RNi[j] denotes the largest
sequence number received in a REQUEST message so far from site S.

 When site Si receives a REQUEST(j, n) message, it sets RNi[j]= max(RNi[j], n).

SUZUKI –KASami’s Broadcast
algorithm

 When a site Si receives a REQUEST(j, n) message, the request is outdated if RNi[j]> n.

 Sites with outstanding requests for the CS are determined in the following manner:

 the token consists of a queue of requesting sites, Q, and an array of integers LN[1, … ,N],
where LN[j] is the sequence number of the request which site Sj executed most recently.

 After executing its CS, a site Si updates LN[i] : = RNi[i] to indicate that its request
corresponding to sequence number RNi[i] has been executed.

 Token array LN[1, … ,N] permits a site to determine if a site has an outstanding request
for the CS.

SUZUKI –KASami’s Broadcast
algorithm

 In Site Si if RNi[j]=LN[j]+1, then site Sj is currently requesting a token.

 After executing the CS, a site checks this condition for all the j’s to determine all the sites
that are requesting the token and places their i.d.’s in queue Q if these i.d.’s are not
already present in Q.

 Finally the site sends the token to the site whose i.d. is at the head of Q.

Requesting the critical section:

 If requesting site Si does not have the token, then it increments its sequence
number, RNi[i], and sends a REQUEST(i, sn) message to all other sites. (“sn” is
the updated value of RNi[i])

 When a site Sj receives this message, it sets RNj[i] to max(RNj[i], sn). If Sj has
the idle token, then it sends the token to Si if RNj[i]=LN[i]+1.

Executing and releasing the critical section:

Executing CS

 Site Si executes the CS after it has received the token.

Releasing the CS

Having finished the execution of the CS, site Si takes the following actions:

 It sets LN[i] element of the token array equal to RNi[i].

 For every site Sj whose i.d. is not in the token queue, it appends its i.d. to the
token queue if RNi[j] = LN[j]+1.

 If the token queue is nonempty after the above update, Si deletes the top site i.d.
from the token queue and sends the token to the site indicated

Potential Security Violations

Three categories of potential security violations are:

Unauthorized information release: This occurs when an unauthorized person is able to read and take
advantage of the information stored in a computer system. This also includes the unauthorized use of a
computer program.

Unauthorized information modification: This occurs when an unauthorized person is able to alter the
information stored in a computer. Examples include changing student grades in a university database
and changing account balances in a bank database.

Unauthorized denial of service: An unauthorized person should not succeed in preventing an
authorized user from accessing the information stored in a computer.

 External Vs. Internal Security

Computer system security can be divided into external security(physical) & internal security.

Design Principles for Secure Systems

 Security Design Principles

• Economy of Mechanism- A protection mechanism should be economical to develop and use

• Complete Mediation- The design of a completely secure system requires that every request to access an object be checked for the authority
to do so.

• Open Design- The Open Design Design Principle is a concept that the security of a system and its algorithms should not be dependent on
secrecy of its design or implementation.(A protection mechanism should work even if its underlying principles are known to an attacker.)

• Separation of Privileges- A protection mechanism that requires two keys to unlock a lock(or gain access to a protected object) is more
robust and flexible than one that allows only a single key to unlock a lock.

• Least Privilege- A subject should be given the bare minimum access rights that are sufficient for it to complete its task.

• Least Common Mechanism - The Least Common Mechanism design principle declares that mechanisms used to access resources should not
be shared.

• Acceptability- A protection mechanism must be simple to use. A complex and obscure protection mechanism will deter users from using it.

• Fail-Safe Defaults- The Fail-Safe Defaults design principle pertains to allowing access to resources based on granted access over access
exclusion. This principle is a methodology for allowing resources to be accessed only if explicit access is granted to a user. By default users do
not have access to any resources until access has been granted. This approach prevents unauthorized users from gaining access to resource
until access is given.

The Access Matrix Model

Access Matrix is a security model of protection state in computer system. It is
represented as a matrix. Access matrix is used to define the rights of each process executing
in the domain with respect to each object. The rows of matrix represent domains and columns
represent objects.

Each cell of matrix represents set of access rights which are given to the processes of domain
means each entry(i, j) defines the set of operations that a process executing in domain Di can
invoke on object Oj.

Implementation of Access Matrix

 Access matrix is likely to be very sparse and takes up a large chunk of memory. Therefore
direct implementation of access matrix for access control is storage inefficient.

 The inefficiency can be removed by decomposing the access matrix into rows or
columns.Rows can be collapsed by deleting null values and so for the columns to increase
efficiency. From these approaches of decomposition three implementation of access
matrix can be formed which are widely used. They are as follows:

 1. Capabilities

 2. Access Control List

 3. Lock and Key Method

https://www.geeksforgeeks.org/access-matrix-in-operating-system/

Capabilities:

 Capabilities:
This method refers to row wise decomposition of the access matrix. Each
Subject is assigned with a list of tuples (o, M[s, o]) for all objects o that it is allowed
to access. This tuples are called Capabilities. If a subject possess a capability (o,
M[s, o]) then it is allowed to access object o in the manner which is described in
M[s, o]. A subject is allowed to access any objects for which it holds the
capabilities.Capabilities are not meant to be forged.Capabilities contain two fields:

 1. Object Descriptor.

 2. Access Rights.

Access Control List:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Requirements of MUTUAL EXCLUSION Algorithms
	Requirements of ME Algorithms
	Slide 9
	Performance Matrices
	Performance Matrices
	Low and high load performance
	Low and high load performance
	Best and worst case performance
	NON TOKEN BASED ALGORITHMS
	Lamport’s Distributed Mutual Exclusion Algorithm
	Lamport’s Algorithm
	Example
	Example- continue
	Slide 20
	Algorithm
	Algorithm
	Lamport’s algorithm: Performance
	Slide 24
	Ricart–Agrawala Algorithm
	Ricart–Agrawala algorithm- Requesting critical section
	Slide 27
	Ricart–Agrawala algorithm- Performance
	TOKEN-BASED algorithm
	SUZUKI –KASami’s Broadcast algorithm
	SUZUKI –KASami’s Broadcast algorithm
	SUZUKI –KASami’s Broadcast algorithm
	SUZUKI –KASami’s Broadcast algorithm
	SUZUKI –KASami’s Broadcast algorithm
	Requesting the critical section:
	Executing and releasing the critical section:
	Potential Security Violations
	Design Principles for Secure Systems
	The Access Matrix Model
	Implementation of Access Matrix
	Capabilities:
	Access Control List:
	Slide 43

